
LipiDetective shows that 


deep learning models are able to identify 

lipid fragmentation patterns

Introduction

Methods

Results

• Hypothesis: artificial neural networks can learn 
characteristic lipid fragmentation patterns in 
mass spectra 


• Aim: test the ability of neural networks to 
identify lipid species from MS2 spectra with pilot 
model LipiDetective


• Benefit: enables analysis of more complex 
datasets in less time and could assist in the 
estimation of false discovery rates 

• Training on reference dataset containing 49 
different phospholipid standards → 6942 MS2 
spectra total


• 13 different collision energies from 20 to 50 eV in 
2.5 eV steps


• Three preprocessing steps: resampling, baseline 
correction and normalization 


• Two methods of cross validation: via lipid 
species and via collision energy


• Feedforward and convolutional neural network 
implemented with PyTorch framework 


• Prediction output: headgroup and side chain 
masses 


• Hyperparameter tuning and inclusion of 
dropout layers to optimize network 
performance


• Common definition of accuracy not well suited 
in this case  
→ Implementation of new measure called 
closeness

Feedforward Network


• Overfitting after the 30th epoch → might be 
good time point for early stopping


• Network shows ~70 % accuracy for predicting 
lipids that it encountered before at different 
collision energy (cross validation via collision 
energy)


• Model struggles with identifying lipids it has 
never seen before (cross validation via lipid 
species)


• Higher resolution needed to distinguish 
between fatty acids one desaturation step away 
from each other


• Performance might be improved by expanding 
the dataset to include more fragmentation 
spectra of different lipids


Convolutional Network


• Less overfitting in convolutional network 
compared to feedforward network


• Similar accuracy as feedforward network, but 
performance still needs to be improved via 
hyperparameter tuning

Conclusion

• Pilot model shows that using neural networks 
for identifying lipid species from fragmentation 
spectra is generally feasible


• Further optimization of the network parameters 
is crucial for enhancing predictive performance 


• Increasing the amount of training data is key
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Workflow

1. Spectrum gets fed into 
the neural network

2. LipiDetective predicts 
masses of headgroups and 

side chains

Headgroup:      184.151

Side Chain 1:   284.477

Side Chain 2:   328.488

PC

18:0

22:6

3. Prediction is evaluated as 
correct if all predicted lipid 
components match label

PC

18:0

22:6

Label

✔︎
✔︎
✔︎

Prediction

correct
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Motivation

1. Identify lipids independent of

 → collision energy

 → platform

 → reference spectra

2. Integrate into database matching pipeline

	  → to improve estimation of false discovery rates (FDR)

	  → for more and better identifications at lower FDR

	  → increasing the quality and reliability of data analysis

Network Performance

Feedforward Convolutional

P-Choline (19)

M+H M+FA-H

14:0/14:0 15:0/15:0 16:0/16:0 16:0/18:0 16:0/18:1 16:0/18:2 16:0/20:4

16:0/22:6 17:0/17:0 18:0/16:0 18:0/18:0 18:0/18:1 18:0/18:2 18:0/20:4

18:0/22:6 18:1/16:0 18:1/18:0 20:0/20:0 22:0/22:0

P-Ethanolamine (13)

M+H M-H

14:0/14:0 15:0/15:0 16:0/16:0 16:0/18:1 16:0/18:2

16:0/20:4 16:0/22:6 17:0/17:0 18:0/18:0 18:0/18:1

18:0/18:2 18:0/20:4 18:0/22:6

P-Serine (8)

M+H M-H

14:0/14:0 16:0/16:0 16:0/18:1 16:0/18:2

16:0/20:4 16:0/22:6 17:0/17:0 18:0/18:0

P-Glycerol (9)

M-H

14:0/14:0 15:0/15:0 16:0/16:0 16:0/18:1

16:0/18:2 16:0/20:4 16:0/22:6 17:0/17:0

18:0/18:0

Dataset

Learning Process


